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1 INTRODUCTION
In routing, the ability to quickly react to network changes is es-

sential for ensuring network availability and efficient operation.

Adapting to link utilization can offer benefits for trafficmanagement

in both wide-area networks (by more flexible allocation of expen-

sive link resource) and datacenter networks (by giving preferential

treatment to group of flows). Many studies address the problem

of bandwidth-constraint routing from an algorithmic perspective.

We are interested in providing a faster, more efficient execution

platform for those algorithms. Previously, we demonstrated that ex-

ecuting routing as an incremental stream computation can quickly

recover from failures [2]. Here, we extend the proposal to support

bandwidth-constraint routing.

We contribute (1) an approach to quickly execute a range of

bandwidth-constraint routing algorithms, (2) a prototype imple-

mentation inside a stream processing system, and (3) an initial set

of evaluations for both datacenter and WAN scenarios.

2 EFFICIENT ROUTING EXECUTION
Topology model. The network topology is represented as a prop-

erty graph G = (V ,E) where V is a set of nodes, and E is a set

of edges. Edges are identified by their end points (e.g., s1, s2) and
have associated properties: utilization, cost and a delta value δ ∈

{−1,+1}. Link cost is defined by a cost function and we imple-

mented three versions: widest-path routing (a min/max cost func-

tion) and two versions of shortest distance routing (an additive cost

function) [3] using link utilization and free bandwidth, respectively.

We present results for the latter. Link update is modelled as a

sequence of edge removal (s1, s2, cost ,δ = −1) and edge addition

with updated cost (s1, s2, costnew , δ = 1).

Incoming flow requests are defined on G and represented as

f low ::= (f lowID, S,T ,BW ), where f lowID is an ID that uniquely

identifies the flow, S and T are the flow’s origin and target nodes

respectively, and BW is the requested bandwidth.

Executionmodel.Wepropose a routing executionmodel which

is proactive and handles updates incrementally. Our system ingests

streams of link updates and flow reservations, and internally main-

tains a set of forwarding rules R which tracks the path with most

free bandwidth between any pair of nodes.

Rules are initialized on G, after which we process a bandwidth

reservation request in three stages. First, from the precomputed

rules, we materialize a candidate path with sub-millisecond latency.

Second, admission control checks if the path can offer the requested

bandwidth, performs necessary flow bookkeeping and constructs

updates for the affected links. Finally, the stream of link updates is

fed to an incremental routing computation, which updates the set of

forwarding rules. As an optimization we allow network updates to

be batched until a certain link utilization threshold is reached, i.e.,

lazy updates. This significantly reduces the number of forwarding

rule recomputations, at the cost of less balanced link utilization.

Implementation. Each stage in the model is implemented as a

streaming operator in Timely Dataflow. The platform is a natural

fit to routing: it has event-driven programming model and native

support for arbitrary iterative computations. Furthermore, in our

experience, Timely’s Rust implementation outperforms other plat-

forms such as Flink [1] and Spark Streaming [4].

3 EVALUATION
As a proof-of-concept experiment we present throughput evalua-

tions for a datacenter network and a wide area network.

Datacenter.Weuse FatTree topology built with 48-port switches;

there are 2880 switches in total and links have total capacity of

10Gbps . From the pool of access switches we randomly select 10k

pairs of source destinations, corresponding to flows. Flow rates

and inter-arrival times follow distributions for cache followers in

the Facebook trace [5]. We use 32 workers for rerouting. As we

increase the lazy updates threshold from 0K (no batching) up to

1Gbps (10% of link capacity), throughput steadily increases up to 2k
requests/sec. Thresholds lower than the average flow rate (5Mbps)
do not gain from batching, explaining the plat performance.

WAN. We chose five topologies from the Internet Topology

Zoo (ITZ) to cover different size graphs: small (Gridnet), medium

(Abeline, AT&T) and large (Cogent,Colt). Link capacities are as in

ITZ. We then submit thousand traffic requests compliant with ran-

domised traffic matrix generation. For small graphs single-worker

computation suffice, for bigger 8 workers are used. Throughput

already starts at 200 requests/sec, for smaller topologies even above

500 reservations/sec. This is an order of magnitude higher than

the datacenter case. The reason - WAN topologies have an order of

magnitude less nodes than FatTree (200 nodes at most). High thresh-

olds rarely trigger rerouting, leading to the same upper bound on

throughput in both WAN and datacenter.
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NETWORK UTILIZATION MATTERS

Workloads evolve and diversity. 

Routing should map demands to resource.

Quickly.
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Forwarding rules are precomputed for fast query.
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EVALUATIONS

PROACTIVE COMPUTATION 

SUPPORTED ALGORITHMS

• Cumulative cost 
• hop count 

• shortest distance link utilization

• shortest distance free bandwidth

• Max/Min cost

• shortest-widest path 
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Constant high gain for small topologies and  

increasing for big ones. Randomised traffic matrices. 
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BANDWIDTH-CONSTRAINT ROUTING 

INCREMENTAL RE-ROUTING

Flow rule

Upon network update recompute ONLY affected rules.
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DATACENTER CASE

Up to 2k flow requests per second in a 48-ary 

FatTree with 32 workers. Facebook workload. 

LAZY UPDATES OPTIMIZATION

1. Store network updates until aggregated 

bandwidth reaches an update threshold.

2. Push network updates in a single batch. 

OUR PROPOSAL

Efficient, proactive routing of traffic 

demands with incremental computation 

and batched request processing. 

WIDE AREA NETWORK CASE


